

WOC-1 Plenary Session

SG 1.2 Assessment of global reserves and resources

SG Leader: Dr. Mohamed Kaced

Seoul, South Korea

12 March 2014

Members/Participants:

- 1) Mohammed Kaced
- 2) Abdelouahad Belmouloud
- 3) Naruepon Lecksiwilai
- 4) Bernard Seiler
- 5) Said Chelbeb
- 6) Fayçal Belaid
- 7) Denis Krambeck Dinelli
- 8) Fernando Bado
- 9) Daojiang Long
- 10) Lilit Cota
- 11) Peter Westhof
- 12) Shariq Hashmi
- 13) Zafeer Hasan Khan
- 14) Ram Ramanathan
- 15) KhazisyedAhmedjeelani
- 16) MontriSilpa-Archa
- 17) Ladislav Goryl
- 18) Bent Svensson
- 19) David Parkinson

Algeria

Algeria

Thailand

France

Algeria

Algeria

Brazil

Argentina

China

Croatia

Germany

Pakistan

Pakistan

Saudi Arabia

Saudi Arabia

Thailand

Slovakia

USA

Singapore

SG1.2 Participants

- 1. Sapporo: 9
- 2. Rio de Janeiro: 9
- 3. Kota Kinabalu: 7
- 4. Seoul: 4

Focus Groups and Deliverables:

- Conventional Gas: Remaining reserve and resource assessment;
 (Team leader: Fernando Jorge Bado _ Tenaris, Argentina)
- **Unconventional gases** (tight, shale gas, CBM, hydrates): reserve and resource assessment;

(Team leader: Kaced Mohammed_ Sonatrach, Algeria

Exploration and discovery trends, and new frontier and exploration areas.

(Team leader: Denis Krambeck Dinelli_Petrobras, Brazil.

 Assessment of gas flaring: initiatives for reduction and enhancing supply;

(GGFR team)

Next steps

Tasks and objectives for the 5th Meeting, Spain

Final Report

- Update of all estimates
- Conclusions

2	GLOBAL RESERVES AND RESOURCES				
	Executive Summary				
2.1	Introduction				
2.1.1	Petroleum Resources Classification Framework				
2.2	Conventional gas				
2.2.1	The global potential of conventional gas				
2.3	Unconventional gas				
2.3.1	Definitions and concepts				
2.3.2	Shale Gas global resource base				
2.3.3	Tight Gas global resource base				
2.3.4	Coalbed Methane Worldwide Resource base				
2.3.5	A Global Inventory of Natural Gas Hydrate Occurrence				
2.3.6	Challenges and Environmental Considerations				
237	Conclusions				

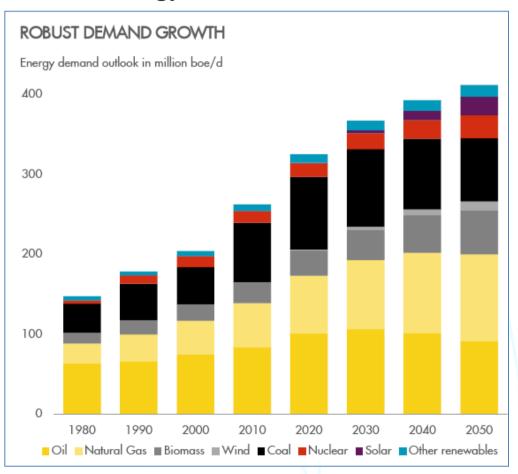
New exploratory frontiers

- 2.4 Gas flaring reduction and supply enhancement
 2.5 Exploratory and discovery trends
 2.5.1 Gas pricing and exploratory risk
 2.5.2 Independent producers
 2.5.3 Gas discovery trends
 2.6 New frontiers and exploratory areas for natural gas
- References

2.6.1

Appendices

A List of Tables


B List of Figures

C Glossary and Acronyms

ENERGY DEMAND OUTLOOK

Global energy mix to 2050

INDUSTRY OUTLOOK

- Hydrocarbons dominate outlook
- Growth required in all sectors of energy mix
- Renewable growth particularly strong
- Energy policy + sustained investment

FOSSIL FUELS WILL SUPPLY MORE THAN 60% OF GLOBAL ENERGY IN 2050

Shale Gas

U.S. Remaining Gas Reserves and Undeveloped Resources

	Shale Gas Resources		
	Distinct Plays (#)	Remaining Reserves and Undeveloped Resources (Tcf)	
1. Northeast			
Marcellus Utica Other	8 3 3	369 111 29	
2. Southeast			
Haynesville Bossier Fayetteville	4 2 4	161 57 48	
3. Mid-Continent			
Woodford* Antrim New Albany	9 1 1	77 5 2	
4. Texas			
Eagle Ford Barnett** Permian***	6 5 9	119 72 34	
5. Rockies/Great Plains			
Niobrara**** Lewis Bakken/Three Forks	8 1 6	57 1 19	
TOTAL	70	1161	

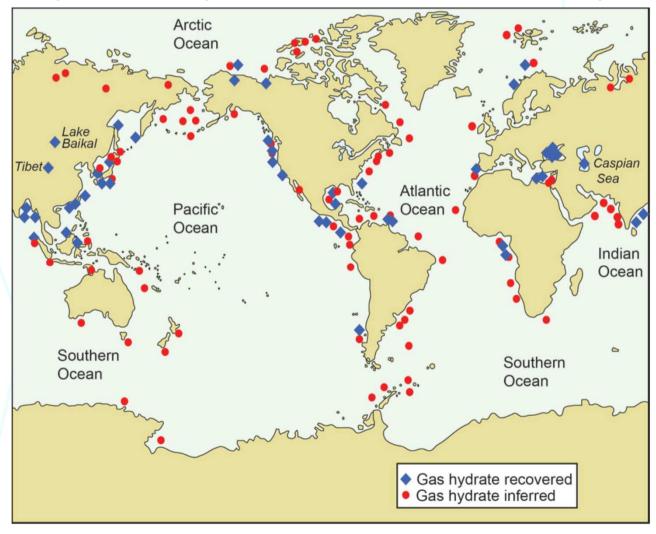
Technically Recoverable						
Shale Gas Resources						
(T cf)						
1. U.S.	1,161					
2. China	1,115					
3. Argentina	802					
4. Algeria	707					
5. Canada	573					
6. Mexico	545					
7. Australia	437					
8. South Africa	390					
9. Russia	285					
10. Brazil	245					
11. Others	1,535					
TOTAL	7,795					

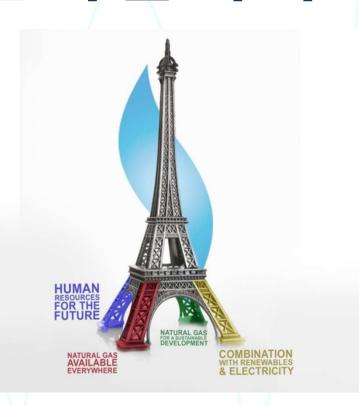
Unconventional Gas Resources

Tight Gas, Shale gas and CBM

	Total g	gas, tcm	Unconventional by type, tcm		
Region	Conventional	Unconventional	Tight gas	Shale gas	CBM
Eastern Europe and Eurasia	160	43	10	12	20
Middle East	132	12	8	4	0
Asia Pacific	44	93	20	57	16
OECD Americas	81	82	16	57	10
Latin America (non-OECD)	27	48	15	34	0
Africa	41	38	8	30	0.1
OECD Europe	35	22	4	17	2
World	519	337	78	210	48

Source: IEA, 2013


Global total sources of unconventional resources in place are estimated at around 340 TCM, of which shales has the largest potential with 210TCM


Where is Methane Hydrate Produced Today?

To date there has been no large-scale commercial methane production from gas hydrate deposits. All of the production has either been small scale or experimental.

감사합니다!

